Search results for "Translational readthrough"
showing 10 items of 11 documents
Translational readthrough of ciliopathy genes BBS2 and ALMS1 restores protein, ciliogenesis and function in patient fibroblasts
2021
Abstract Background Ciliary dysfunction underlies a range of genetic disorders collectively termed ciliopathies, for which there are no treatments available. Bardet-Biedl syndrome (BBS) is characterised by multisystemic involvement, including rod-cone dystrophy and renal abnormalities. Together with Alstrom syndrome (AS), they are known as the ‘obesity ciliopathies’ due to their common phenotype. Nonsense mutations are responsible for approximately 11% and 40% of BBS and AS cases, respectively. Translational readthrough inducing drugs (TRIDs) can restore full-length protein bypassing in-frame premature termination codons, and are a potential therapeutic approach for nonsense-mediated ciliop…
Nonsense codons suppression. An acute toxicity study of three optimized TRIDs in murine model, safety and tolerability evaluation.
2022
Stop mutations cause 11% of the genetic diseases, due to the introduction of a premature termination codon (PTC) in the mRNA, followed by the production of a truncated protein. A promising therapeutic approach is the suppression therapy by Translational Readthrough Inducing Drugs (TRIDs), restoring the expression of the protein. Recently, three new TRIDs (NV848, NV914, NV930) have been proposed, and validated by several in vitro assays, for the rescue of the CFTR protein, involved in Cystic Fibrosis disease. In this work, an acute toxicological study for the three TRIDs was conducted in vivo on mice, according to the OECD No.420 guidelines. Animals were divided into groups and treated with …
RESCUE OF LRBA GENE EXPRESSION IN PRIMARY HUMAN FIBROBLASTS CHARACTERISED BY NONSENSE MUTATION c. 5047 (C>T).
2021
Primary immunodeficiencies (PIDs) are rare genetic diseases characterized by susceptibility to infections, increased risk of autoimmunity, hypogammaglobulinemia, and lymphoproliferative syndromes. PIDs are associated to genetic alterations in about 400 known genes, among which, mutations of the LRBA gene. LRBA gene encodes a widely expressed multi-domain protein with highly conserved BEACH domain, involved in regulation of endosomal trafficking, particularly endocytosis of ligand-activated receptors. It was reported that stop mutations affect this gene leading to the loss of the protein expression. Recently, we identified three Translational Readthrough Inducing Drug (TRID), that showed hig…
Enhancement of premature stop codon readthrough in the CFTR gene by Ataluren (PTC124) derivatives.
2015
Abstract Premature stop codons are the result of nonsense mutations occurring within the coding sequence of a gene. These mutations lead to the synthesis of a truncated protein and are responsible for several genetic diseases. A potential pharmacological approach to treat these diseases is to promote the translational readthrough of premature stop codons by small molecules aiming to restore the full-length protein. The compound PTC124 (Ataluren) was reported to promote the readthrough of the premature UGA stop codon, although its activity was questioned. The potential interaction of PTC124 with mutated mRNA was recently suggested by molecular dynamics (MD) studies highlighting the importanc…
The innovative role of the readthrough inducing drugs in the translation rescue of mRNAs characterized by premature stop codon (PTCs).
Strategies against nonsense: oxadiazoles as translational readthrough-inducing drugs (TRIDs)
2019
This review focuses on the use of oxadiazoles as translational readthrough-inducing drugs (TRIDs) to rescue the functional full-length protein expression in mendelian genetic diseases caused by nonsense mutations. These mutations in specific genes generate premature termination codons (PTCs) responsible for the translation of truncated proteins. After a brief introduction on nonsense mutations and their pathological effects, the features of various classes of TRIDs will be described discussing differences or similarities in their mechanisms of action. Strategies to correct the PTCs will be presented, particularly focusing on a new class of Ataluren-like oxadiazole derivatives in comparison …
PTC124-mediated translational readthrough of a nonsense mutation causing Usher syndrome type 1C.
2011
We investigated the therapeutic potential of the premature termination codon (PTC) readthrough-inducing drug PTC124 in treating the retinal phenotype of Usher syndrome, caused by a nonsense mutation in the USH1C gene. Applications in cell culture, organotypic retina cultures, and mice in vivo revealed significant readthrough and the recovery of protein function. In comparison with other readthrough drugs, namely the clinically approved readthrough-inducing aminoglycoside gentamicin, PTC124 exhibits significant better retinal biocompatibility. Its high readthrough efficiency in combination with excellent biocompatibility makes PTC124 a promising therapeutic agent for PTCs in USH1C, as well a…
Rescuing the CFTR protein function: Introducing 1,3,4-oxadiazoles as translational readthrough inducing drugs.
2018
Nonsense mutations in the CFTR gene prematurely terminate translation of the CFTR mRNA leading to the production of a truncated protein that lacks normal function causing a more severe form of the cystic fibrosis (CF) disease. About 10% of patients affected by CF show a nonsense mutation. A potential treatment of this alteration is to promote translational readthrough of premature termination codons (PTCs) by Translational Readthrough Inducing Drugs (TRIDs) such as PTC124. In this context we aimed to compare the activity of PTC124 with analogues differing in the heteroatoms position in the central heterocyclic core. By a validated protocol consisting of computational screening, synthesis an…
Pharmacophore-Based Design of New Chemical Scaffolds as Translational Readthrough-Inducing Drugs (TRIDs)
2020
[Image: see text] Translational readthrough-inducing drugs (TRIDs) rescue the functional full-length protein expression in genetic diseases, such as cystic fibrosis, caused by premature termination codons (PTCs). Small molecules have been developed as TRIDs to trick the ribosomal machinery during recognition of the PTC. Herein we report a computational study to identify new TRID scaffolds. A pharmacophore approach was carried out on compounds that showed readthrough activity. The pharmacophore model applied to screen different libraries containing more than 87000 compounds identified four hit-compounds presenting scaffolds with diversity from the oxadiazole lead. These compounds have been s…